تشخیص صرع در سیگنال EEG با استفاده از الگوریتم ابتکاری صفحات شیبدار(IPO)
نویسندگان
چکیده مقاله:
Epilepsy is a neurological disorder after stroke. About 1 percent of people in the world are involved with this second most common neurological disorder. Epilepsy can affect people of different ages with an altered behavior or lack of patient awareness and affect one's social life. In 75% of cases, if epilepsy is diagnosed early and properly, it can be treated. Among all existing methods of analysis for the detection of epileptic brain activity, EEG is more applicable, due to its special features (including its low-cost and innocuous). Despite all the advantages of this method, the visual scoring of the EEG records by a human scorer is clearly a very time consuming and costly task considering the large number of epileptic patients admitted to the hospitals and the amount of data needs to be scored. Thus, a tremendous effort has been devoted by researchers towards automatic epileptic seizures detection in EEG. This paper offers a novel method based on heuristic and intelligent algorithms, inclined planes system optimization (IPO), to detect epileptic samples from healthy subjects. Like other heuristic algorithms, IPO is inspired by nature and its laws. How to move sphere objects on the slope without friction and their desire to reach the lowest point, shapes the main idea of the IPO. In the IPO, small balls like particles in the PSO are placed randomly on the search space. The balls search the search space to find the optimal point which is the lowest point (relative to a reference point) on the surface. In the current work, the data described by Andrzejak et al. was used; which contains 5 sets (Z, O, N, F and S). In this work, three different classification problems are created from the above dataset in order to compare the performance of our method with other approaches: In the first, two sets were examined, normal (set Z) and seizure (set S). In the second, four sets of the dataset were used and they were classified into two different classes: non-seizure (sets Z, N, F) and seizure (set S). In the third, all the EEGs from the dataset were used and they were classified into two different classes: sets Z, O, N and F are included in the non-seizure class and set S in the seizure class. The EEG signal under study is firstly decomposed into five sub-bands through DWT (D1–D4 and A4), and each sub-band represents different frequency bands information. Afterwards, four statistical parameters of maximum, minimum, average and standard deviation were calculated for each sub-band. And then, using the optimization algorithm IPO, the best weights are calculated to apply to the OVA classifier in order to find the best hyper plane separating the two classes. The fitness function defined in the IPO algorithm, is the number of signals that have been classified incorrectly. To classify EEG signals in three problems, the 10-fold Cross-Validation method is used. In this method, the data is divided into 10 subsections. And then, one subset is used for test and nine others for training. This procedure is repeated 10 times, until all the data is used for testing. The proposed algorithm have been implemented 10 times for the two wavelet functions Db1 and db2. Using the proposed method, the accuracy obtained for the three problems is 100%, 98/1%, 97/34%, respectively. Also by the proposed method diagnosis of epilepsy can be achieved very quickly. The results show that the algorithm is capable of detecting signals of epileptic and non-epileptic in less than 5 milliseconds. This makes it possible to use this method in real-time systems.
منابع مشابه
تشخیص حملات صرع با استفاده از تخمین طیف سیگنال eeg
در این پایان نامه یک روش جدید با استفاده از تخمین طیف مبتنی بر بردارهای ویژه و شبکه عصبی برای شناسایی حملات صرع معرفی شده است. در این روش سیگنال های eeg به سه دسته ذیل تقسیم بندی می شوند: (1) سیگنال شخص سالم (healthy) (2) سیگنال شخص مبتلا به صرع در غیاب حمله (inter-ictal) (3)سیگنال شخص مبتلا به صرع حین حمله (ictal). روش ارایه شده شامل دو نوع الگوریتم است. در الگوریتم اول، طیف سیگنال eeg با استف...
15 صفحه اولشناسایی خودکار حالتهای مختلف بیماری صرع از سیگنال EEG با استفاده از شبکههای یادگیری عمیق
استفاده از روشی هوشمند برای تشخیص خودکار مراحل مختلف صرعی در کاربردهای پزشکی، برای کاهش حجم کار پزشکان در تجزیهوتحلیل دادههای صرع با بازرسی بصری، یکی از چالشهای مهم در سالهای اخیر محسوب میشود. یکی از مشکلات شناسایی خودکار مراحل مختلف صرعی، استخراج ویژگیهای مطلوب است؛ بهگونهای که این ویژگیها بتوانند بیشترین تمایز را بین مراحل مختلف صرعی ایجاد کنند. فرآیند یافتن ویژگیهای مناسب، عموماً ام...
متن کاملتشخیص اتوماتیک صرع با استفاده از تحلیل زمان- فرکانس eeg
صرع نوعی اختلال در عملکرد مغز است که به صورت ناگهانی،کنترل نشده و نا منظم در یک بخش، یا تمام سیستم عصبی مرکزی رخ میدهد. حملات صرعی به اختلالات شدید و تکرار شونده ی مغزی گفته میشودکه علامت مشخصه ی بیماری صرع می باشد. با تجزیه و تحلیل سیگنال eeg درک بالایی از مکانیزمهایی که موجب اختلالات مغزی میشود بدست میآید. در موارد حاد که بیمار نیاز به جراحی دارد باید کانون صرع در مغز مشخص شود. تشخیص حمله در ...
تشخیص همزمانی فاز در سیگنال های eeg نوزادان با استفاده از روش اطلاعات متقابل
یکی از مهم ترین اختلالات سیگنال های eeg نوزادان، عدم همزمانی بین کانال ها می باشد که مطالعات کلینیکی نشان داده است می تواند به نتایج عصبی و جسمی نامطلوبی در بزرگسالی منجر شود. هدف اصلی این مقاله، معرفی یک روش جدید برای تشخیص خودکار همزمانی فاز در سیگنال های eeg چندکاناله ی نوزادان است. در روش پیشنهادی، ابتدا فاز لحظه ای هر کانال از سیگنال eeg نوزاد با استفاده از تبدیل هیلبرت تخمین زده شده است. ...
متن کاملتشخیص بیماری صرع با استفاده از روشهای ابتکاری
تشنج مهمترین علامت بیماری صرع بوده و آنالیز دقیق آن نیز از طریق انجام الکتروانسفالوگرافی(eeg) امکان پذیر است. به دلیل ماهیت این سیگنالها، مطالعه و تجزیه و تحلیل بصری آنها حتی برای یک نورولوژیست مجرب نیز مشکل است. به همین منظور روشهای مختلفی جهت تشخیص خودکار صرع بوسیله تحلیل سیگنال eeg ارائه شده است. در این تحقیق برآنیم تا مروری مختصر بر روشهای تشخیص و جداسازی سیگنالهای صرعی از سیگنالهای سالم و ...
15 صفحه اولتشخیص کودکان adhd با استفاده از پارامترهای غیرخطی سیگنال eeg
اختلال adhd اختلالی است که در آن پرتحرکی، بی توجهی و رفتارهای ناگهانی بیشتر و شدیدتر از کودکان دیگر وجود دارد. 3 تا 5 درصد کودکان به این اختلال مبتلا هستند. مشکل اصلی کودکان adhd عدم توانایی آنها در حفظ و تنظیم رفتارشان است. تشخیص کودکان adhd با استفاده از بررسی های بالینی انجام می شود. این بررسی ها و تشخیص ها با استفاده از استاندارد dsm-iv صورت می پذیرد. . از آنجا که adhd یکی از بحث برانگیزتر...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 13 شماره 4
صفحات 29- 42
تاریخ انتشار 2017-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023